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The integral to be evaluated is of the form 

where R and LI are real, and the wave numbers K, and K, can be complex. The ,Js are 
spherical Bessel functions. Our method makes use of a recursion relation between G(L), 
G( L + I ), and G(L - I), together with the values of G for L = 0 and L = -1. The latter are 
expressed in terms of error integrals of complex argument and are evaluated numerically with 
high accuracy by means of a continued fraction. Four methods are presented for calculating G 
at integer values of L. One consists of solving analytically the inhomogeneous finite difference 
recursion equation in terms of sums from 0 to L and from L+ I to IX: of quantities which 
involve the two linearly independent spherical Bessel functions of argument zJ = 
(K,a)(K,n)/ZL The other three methods consist in numerically evaluating the recursion 
relation, either upwards in L, starting with the known values G(0) and G( - I), or downwards 
in L. either starting with two G values taken equal to zero, or following a method described 
by Olver. The method of Olver is found to be the one generally most useful, in that it gives a 
reliable estimate of the truncation error. Accuracies of twelve significant digits are usually 
achieved, on a computer (IBM 3081) using 16 bit words, as is demonstrated from the com- 
parison of the four methods in numerical examples. The computing time is much less than the 
methods involving radial mesh sums, by factors of 5 or more, depending on the values of K, R 
and K,R. 11 1987 Academic Press. Inc 

I. INTRODUCTION 

The integral examined in the present study is of the form 

G(L) = 1” f,(r) V(r) .fAr) dr, 0 

where 

f;(r) = KrjL(Kr), i= 1,2 
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and 

V(r) = exp( - r*/a’). 

For the case that the limit of integration R is infinite the result for G is known 
analytically, and the value of the integral is easily computed. For finite values of R 
a good method for evaluating G does not seem to exist in the literature. Integrals 
for finite values of R of the type of ( 1.1) do occur frequently in the solution of scat- 
tering problems. For example, in the Kapur Peierls method [ 11, where the L.‘s are 
Gamow states, or in other methods where the fs are chosen arbitrarily [2], and in 
still other cases [3,4] where the j’s are spherical Bessel functions of real wave 
numbers Ki such that the f s vanish at R. 

What motivated the present investigation was the formulation of scattering 
theory in terms of a basis of Sturmian functions [S] (of positive energy). This 
method avoids the need of the is in the Green’s functions since it incorporates the 
scattering boundary conditions ab initio, leads to a rapidly converging expansion 
[6] for the scattering T-matrix, and also provides a separable representations of the 
T operator and of the nonlocalities in the optical potential [6]. A particularly sim- 
ple set of Sturmian functions are Bessel functions of the type (1.2) in which the K,‘s 
are complex such that the f;fi’s have the same outgoing wave boundary condition as 
the scattered wave at the matching radius R. Beyond this distance only Coulomb 
potentials are assumed to be present, and if the logarithmic derivative of the fis is 
set equal to that of the outgoing physical Coulomb wave, then Coulomb potentials 
can be included in the scattering problem without loss of the good convergence 
properties. 

The coefficients of the expansion of the scattering wave in terms of a set of basis 
functions f, (such as the Sturmians) are obtained by solving a set of algeraic 
equations, which involve matrix elements of the type of Eq. ( 1.1). Since the f’s can 
be strongly oscillatory, and since there may be many such matrix elements, the 
evaluation of the integrals by a numerical summation over a radial mesh in the 
interval from 0 to R may not be very practical or accurate. Hence the desirability 
for an alternative method to evaluate integrals of this type. One such method is 
given in the present study. It consists of deriving an inhomogeneous three term 
recursion relation between the G’s, and showing how the solution to these 
equations can be obtained with high accuracy. 

A Bessel function basis of the type (1.2) is useful because the L-behaviour of these 
functions is similar to that of the physical scattering functions being expanded. In 
addition the Bessel functions, being closely reiated to plane waves, facilitate the 
transformation from one center of mass to another [4]. Such a transformation 
occurs in the description of rearrangement reactions, and hence the use of the 
Sturmian-Bessel basis can simplify the evaluation of the complicated six dimen- 
sional integrals enormously [7]. An alternate set of Sturmian basis functions can 
also be constructed with Chebyshev polynomials [S] rather than Bessel functions. 
The advantage of these polynomials is that the potential in the matrix elements 
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(1.1) can be of a general form, provided it is easily expandable in powers of r. In 
this case the matrix elements can be evaluated rapidly and accurately, without the 
need of methods of the type developed in the present paper. So far the Chebyshev- 
Sturmian method has been used only in the evaluation of Sturmian eigenfunctions 
and eigenvalues for a Woods-Saxon-like nonhermitian potential [S]. 

Methods to evaluate integrals of the type of Eq. (1 .l ) by means of recursion 
relations have been developed by many authors. One of the oldest [9] involves 
Coulomb functions and was later generalized by Baur et uf. [lo] and by Raynal 
[ 111. For the relativistic Coulomb case Wright and co-workers [ 121 have 
described a method which was developed further by Rost [13]. Other methods 
involving matrix series were given by Onley and collaborators [ 141. A recursion for 
integrals of the type (1.1) in which the potential is of the form r“ exp(hr) has 
recently been developed by Hirschorn [ 1.51, using a matrix recursion technique 
developed by Wright and collaborators [ 163. This method, in which the values L of 
the two Bessel functions need not be assumed to be equal, would be suitable for 
generalizing the results developed in the present paper to potentials other than 
those of Gaussian form. 

Numerical solutions to the recurrence relation will be obtained by means of four 
different methods, between which comparisons are made. Since the recursion 
relation has three terms, two values of the solution have to be prescribed so as to 
render it unique. In the method given by Olver [17] the two input values are for 
L=O and L=L,,,. The value at L = 0 can be calculated by noting that the 
integral G(0) can be related to a combination of error functions of complex 
argument. The latter can be evaluated in terms of a rapidly converging continuous 
fraction, or by a method given by Gautschi [18]. At L,,, the value of G is set 
equal to zero. This last condition introduces an error which can be accurately 
estimated in Olver’s method, and thus a suitable value of L,,, can be obtained. A 
second method makes use of an exact analytical solution of the recurrence relation 
which is given in the present study. It involves sums over Bessel-related functions 
which, however, are not as easily evaluated as the recursion relation itself. It gives 
the most accurate results, and is used for comparison purposes. A third method 
consists in evaluating the recursion relation downward in L, starting from LMAX 
and setting both G(L,,,) and G(L MAX + 1) equal to zero. This method is similar 
to the procedure given by Miller [ 191. This method is simpler than Olver’s, but has 
the disadvatage that the truncation error is not known in advance. An advantage is 
that it can provide an independent check on the error function method for L = 0. A 
fourth method consists in carrying the recursion relation upwards in L, starting 
with the values of G at L = -1 and L = 0, which are known since both G( - 1) and 
G(0) can be obtained from a combination of error functions. This method becomes 
unstable when G(L) starts to decrease with increasing L. This occurs whenever the 
turning points for either one of the two Bessel functions in the integrand of (1.1) are 
less than the upper limit of integration R, i.e., for L larger than either K, R or K, R. 
For values of L smaller than the above values, the upward recursion method is the 
fastest and most accurate. 
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In Section 2 the recurrence formula is derived; in Section 3 the evaluation of G(0) 
and G( - 1) is described in terms of error functions and their continued fraction 
expressions. In Section 4 the analytic solution is presented; in Section 5 numerical 
applications of the various methods are made and the numerical accuracy achieved 
is examined. 

2. THE RECURRENCE RELATIONS 

The integral to be evaluated is 

G(L,K,,K2,R,u)=SX/,(K,r)exp(-r2/u2)f;(K2r)dr, (2.1) 
0 

where 

fL(Z) = ZjL(Z). (2.2) 

The j’s are spherical Bessel functions, [20], the K’s are real or complex, and R 
and a are real. 

The gaussian form of the potential was dictated by the simplicity of the 
corresponding recursion relation which is 

G(L-1)-[(4L+2)/(K,aK2a)]G(L)-G(L+1)=X(L)exp(-R2/a2),(2.3a) 

where 

X(L) = (2L + 1) Rj,(K, R)j,(K,r). (2.3b) 

This result follows from the recursion relation between products of spherical Bessel 
functions 

fL--1(ZI)fL-L(ZZ)-fL.+L(Z,)fL+l(Z2) 

= CW + l)/K,K,l d/drCf,(z,)f,(z,)lrl, (2.4) 

where z, and z2 are complex arguments. Multiplying both sides of Eq. (2.4) with a 
general potential V(r), integrating over r from 0 to R, and integrating by parts the 
right hand side of the equation, one obtains 

G(L- I)-G(L+ I)= CCX+ 1MK,K2r)l Vr)fAK,r).fJ&r)loR 

- C(2L+ l)lK,K,l j‘R.fL(KIr).fLCKZr) (i$f dr. (2.5) 
0 
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The only from which V can have so that the expression r-l dV/dr in the integral is 
proportional to V itself, is for a gaussian radial dependence exp(Ar”). For the 
present application it is chosen to be of the form 

V(r) = exp( - r’/a’) (2.6) 

and as a result one obtains Eq. (2.3) which is the basic recurrence relation used in 
the numerical applications in Section 5. 

The homogeneous part of the recurrence relation (2.3) (obtained by setting the 
right-hand side equal to zero) is satisfied by the two linearly independent Bessel 
functions of the type [20] 

.fLkJ = iL + lz3 jL(Z3), (2.7) 

4k3 I= i L+ ‘23 CYh3) + ijL(Z,)l, (2.8) 

where 
-7, = K, aKz aJ2i. (2.9) 

Through this observation one can obtain an anlytical expression for G(L) in terms 
of fL and qL, as is discussed in Section 4. 

For the case that the two L-values of the Bessel functions in the integral are not 
the same, a general expression to evaluate such an integral has not been found. 
However, the particular integral 

G,(L,K,,K2,R,a)=~R,ll(Klr)r~exp(-r2la2)f,~.(K2r)dr (2.10) 
0 

can be evaluated by relating these G,‘s to the integral G described above (i.e., the 
case when n = 0). The desired relations are obtained by starting from the recursion 
relation 

r ‘z--m ‘CK,f,~,(2,).fm(z2)-K2,fn(17,)JX(Z2)1 
= d/dr[r” + ‘f,,(z,) fm(zz)]. (2.11) 

When n is set equal to m, this expression does not reduce to Eq. (2.4), unless, in 
addition, the relation 

z(fn+,+fn 1)=(2n+l)L (2.12) 

is used. 
Multiplying both sides of Eq. (2.1) by the gaussian potential of Eq. (2.6), 

integrating over r from 0 to R, again doing an integration by parts, then setting 
m = n - 1 and finally denoting n as L, one obtains 

W2)Gl(L)= -fL(KIR)fL-,(K2R)exp(-R2/a2) 
+K,G(L-l)-K,G(L). (2.13) 
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Repeating the same procedure but setting m = n - 2, one obtains 

(2/a*) G,(L)= -fL(KlWfL--2(K2R) Rexp(-R*la*) 

+K,G,(L-l)-K,G,(L) (2.14) 

and so forth. The above results show that the basic quantities needed for the 
evaluation of the G,‘s are the G’s, which are obtained numerically in Section 5. 
Setting n = m = L does not appear to yield a useful result. In the next section the 
case L = 0 and L = -1 will be discussed. 

3. EXPRESSIONS FOR G(0) AND G(- 1) IN TERMS OF CONTINUED FRACTIONS 

For the case that L is 0 or - 1 the functions fL(z) are equal to sin z or cos z, 
respectively, and the G’s have the form 

G(O)= joR sin(K, r) exp( -r*/a*) sin(K,r) dr, 

G(-l)=/OR cos(K, r) exp( -r’/a*) cos(K,r) dr. 

By expressing the product of the two sines or the two cosines in terms of a sum of 
two cosines, one obtains 

G( - 1) + G(0) = Z(KT , R, a), (3.1) 

where 

and where 

K?=K,fK, (3.2) 

I(K, R, a)= j” cos(Kr) exp( - r’/a’) dr. (3.3) 
0 

By making further use of the definition of the error function erf(z), given by 
Eq. (7.1.1) in [20], one finds 

I(K, R, a) = (ax1’*/4) exp[ - (aK/2)*] 

x [erf( R/a - iaK/2) + erf( R/a + iaK/2)]. (3.4) 

This result is equivalent to Eq. (3.322) in Ref. [21]. If the argument z of the error 
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function is in absolute value smaller than 2 or 3, the series expansion given by 
Eq. (7.1.5) of [20], 

(n”‘/2) erf(2) = z f ( -z2)“/[n!(2n + l)] (3.5) 
n = 0 

is useful since it converges rapidly with good accuracy. Otherwise one can make use 
of the connection of the erf(z) with erf c(z) (their sum is unity) and express erf c(z) 
in terms of the continued fraction 

1 l/2 1 312 2 
c’z’=+zi--~~~~~ (3.6) z z 

as given by Eq. (7.1.14) of [20]. The requirement for the validity of this connection 
is that the real part of z be positive, which requires 

2(R/a)‘> (Im(K, * K,)Rl. (3.7) 

The connection is 

exp(z2) erf(z) = exp(z2) - x ‘,‘C(z). (3.8) 

The final expression, which is convenient for numerical evaluation, is obtained by 
combining Eqs. (3.4) and (3.8). The result is 

I( K, R, a) = (a/2) n”’ exp( - aK2/4) 

- (a/4) exp( - R2/u2)[exp(iKR) C(R/a - iaK/2) 

+ exp( - iKR) C( R/a + iuK/2)]. (3.9) 

Inserting Eq. (3.9) into (3.1) and solving for the G’s one obtains 

G(-l)=Ncos(z,)-(u/4)exp(-R2/a2)(u +u+)/2, (3.10a) 

G(0) = iN sin(z,) - (u/4) exp( - R’/a’)(u- - u, )/2, (3.10b 

where z3 is defined in Eq. (2.9), where 

N = (a/2) z’12 exp[ -a2(q + K:)/4] (3.11 

and where 

u f = exp(iK, R) C(R/a - iaK, 12) 

+exp(-iK*R)C(R/a+iaK,/2). 

These are the results needed in Sections 4 and 5. 

(3.12) 
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4. ANALYTIC EXPRESSION FOR G(L) 

The basic idea for obtaining an analytical expression for G(L) is to treat the 
recurrence relation (2.3) as a second order finite difference equation in L, where the 
X(L) is the inhomogeneous driving term. The two independent solutions of the 
homogeneous parts of the difference equations are the functions f,(z,) and qL(z3), 
defined in Eqs. (2.7)-(2.9), and the effect of the inhomogeneous term is taken into 
account by the method of variation of parameters [22]. 

The first step consists in separating G(L) into a part G(L) which is the solution 
of the homogeneous recurrence relation, plus a remainder which takes into account 
the effect of the inhomogeneous term 

G(L,K,,K,,R,a)=G(L,K,,K,,u) 

+ exp( - R2/a2) %(L, K,, K,, R, a). (4.1) 

Both G and G go to zero as L tends to infinity because the f’s in the respective 
integrands become very small in the radial region where exp( -r2/a2) is significant. 
Since G(L) is the solution of the homogeneous recursion equation (Eq. (2.3a) with 
X(L) = 0), it is of the form AfL + BqL. However, B must vanish because G goes to 
zero as L goes to infinity, while qL goes to infinity. By matching G(O) to the limit of 
G(0) as R -+ co, we find that A = N, with N given by Eq. (3.11). Thus, the result for 
G is the well-known expression 

G(L,K,,K2,a)=il~~,~~(K,r)e~‘:;“*,fL(K2r)dr 

= (a/2) n’/* e ~“‘(K:+K:)/4jL+IfL(K,aK2a/2j). (4.2) 

An analytical expression for Y(L) will now be derived from the recursion relation 
which it obeys. The recurrence relation for Y(L) is obtained by inserting Eq. (4.1) 
into (2.3) and cancelling the gaussian on both sides. The result is 

C?J(L-l)+i[(2IC+ l)/zJ cc?(L)-9(L+ 1)=X(L), (4.3 1 

where zj and X are defined in Eq. (2.9), and (2.3b), respectively. The values of 
%( - 1) and Y(0) are obtained from the coefficients of exp( - R21a2) in Eqs. (3.10). 
The result is 

3( - 1) = -(u/4)(u + 24 + )/2, 

g(O) = -(a/4)(u- - u + )/2, 

(4.4a) 

(4.4b) 

where the u’s are known from Eq. (3.12). 
The solution of the inhomogeneous difference Eq. (4.3) by the method of 

variation of parameters [22] (or oscullating parameters, as it is also called), con- 

%1.68.1-X 
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sists in expanding 9 in terms of the two linearly independent solutions of the 
homogeneous equations, f and 4. 

Inserting Eq. (4.5) into Eq. (4.3), making use of the homogeneous recursion relation 
satisfied by the fs and q’s and further imposing the oscullating condition on the 
coefficients A and B. 

(A,>-A,+,)fi+, +(BL-BL+,M,,+, ==O (4.6) 

one obtains the result 

(AL. 1 -AJf, ,+(B, -,-BdqL ,=X(L). (4.7) 

The general solution of Eqs. (4.6) and (4.7) is 

A,=A,- 2 X,q,lh 
I= I 

BL. = 4, + i X,.Nd, 
/=I 

(4.8a) 

(4.8b) 

with 

n,=ql(Z~)fl-1(Z3)-fl(Z3)4,~,(Z3)=i(-)’+’. (4.9) 

The quantities A, and B, are still arbitrary constants which express the fact that 
one can add to the solution of the inhomogeneous equation an arbitrary amount of 
solutions of the homogeneous equation. (For L = 0 the sums in the two expressions 
above are to be set to zero.) 

The constants A, and B, are determined from the boundary conditions as 
follows. For large values of L the quantity gL should become very small since both 
G and G become small. Since qr. increases with L, the coefficient B, has to decrease 
with L faster than qL increases. This can be accomplished by setting B, equal to the 
negative of the sum S, 

-B,zS= f X,f,/d,. (4.10) 
I= I 

On the other hand, A,, and B, can both be evaluated in terms of C$, and %, , given 
by Eq. (4.4), and by taking into account Eq. (4.7). Making explicit use of the 
functions f and 4 listed in Table I, one obtains the result 

A0 = (CK , - X0 + 9,) exp( iz3), (4.11) 

B, = (% I - X0) sin(2,) + i?& cos(z,). (4.12) 
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TABLE I 

Functions fL, qLa 

L 3Lf,(Z, YL(Z) 

-1 
0 
1 

cos(z) 
i sin(z) 

cos(z) - sin(z)/z 

iexp( -iz) 
-iexp(-iz) 

(i+ l/z) exp( -iz) 

“Defined by Eqs. (2.7) and (2.8), respectively. They obey y,_, - yL+, + iyL(2L+ 1)/z =0, where 
y = .f or q. 

Since S has to be the negative of B,, the result (4.11) implies the existence of an 
identity between error integrals and sums over Bessel functions 

(CC, -X0) sin(z,) + igO cos(z,) = -S. (4.13) 

The validity of this identity is confirmed by numerical calculation, as is discussed in 
Section 5. By combining the results of Eqs. (4.2) (4.10))(4.13) one obtains the final 
answer. 

exp[ -a2(K: + K;)/4] 

+(~~1-X0+~0)exp(-iz,-R2/a2) f,(z,) 
1 

1 

(4.14) 

In the above, X, is defined in Eq. (4.5); the u’s needed in the definition of the 9’s 
according to Eqs. (4.4) are given in Eq. (3.12); the 4’s, f’s, and d’s are defined in 
Eqs. (2.7), (2.8), and (4.11), respectively; i3 is given by Eq. (2.9). When L=O the 
sum from I= 1 to L is replaced by zero and the sum form L + 1 to co is replaced by 
-B,, given by Eq. (4.12). Combining the various terms one regains Eq. (3.10b). 

5. NUMERICAL ACCURACY 

In this section the various methods for evaluating the recursion relation (2.3) will 
be applied to numerical examples. In particular, it will be shown that Olver’s 
method is very well suited because it gives a very reliable estimate of the truncation 
error, and it works well under general conditions. 
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In Olver’s method [ 171 the solutions G(L) of Eq. (2.3) are calculated for a range 
of L’s between 0 and an upper value P, so that G(0) is equal to a known value. For 
this purpose a value of L larger than P is chosen, denoted as N, at which G(N) is 
set equal to zero. A method is given for choosing N so that the values of G in the 
interval from L = 0 to L = P have a truncation error which is smaller than a 
prescribed value. Further details are given in the Appendix 2. 

The value G(0) needed as input for Olver’s method is calculated by expressing it 
as a combination of complex error functions, and evaluating each error function by 
a continued fraction, as is described in Section 3. The evaluation of the continued 
fraction C(z) is carried out by means of a method developed by Steed [23] and 
applied by Barnett et al. [24] and also by Rawitscher and Rasmussen [25]. This 
method employs a recursion technique involving powers of z -* which is terminated 
when an accuracy parameter E,. has been satisfied, as is described further in Appen- 
dix 1. It has been verified in previous applications of the method [25], that the 
accuracy delivered by the algorithm is indeed better than what is prescribed by the 
parameter sO. A value of 10 ” is assigned to this parameter in the present 
application. All calculations are carried out in double precision on an IBM 3081, 
which carries between 16 and 17 significant decimal figures in each step of the 
calculation. 

The Bessel functions provide an important input into the calculation and it is 
their accuracy which ultimately limits the accuracy of the final result as will be 
shown. Bessel functions are needed for the evaluation of the inhomogeneous terms 
X(L), as well as for the analytic solution. The former requires ,j,.(KR) and the latter 
j,(z,) and L.~A=~), where z3 = K, aK,a/(2i). Two methods are used for evaluating 
the Bessel functions, depending on how large the argument is compared to L. When 
IzI < L, the expansion of ,jl.(z) in polynomials of (l/z) times exp( -t iz) is employed, 
following Eq. (10.1.10) of [20]. When IzI > L, then ,jl. is calculated from a 
downward recursion relation which is started at a value of L,,,, which can be as 
large as 160. What dictates the choice of L,,, are the overflowPunderflow 
problems of the computer, as well as the requires accuracy criteria. The method for 
determining the latter is verlied by a procedure given by W. Kahan, as described on 
p. 52 of a paper by Gautschi [IS]. 

The variable zj is mainly imaginary when the values of K are mainly real, as is 
the case in the present numerical examples. The corresponding Bessel functions are 
proportional to exp( f lm(z,)} which can become very large for large values of K, 
and K,, and hence can produce underflow and overflow errors. This happens for 
the IBM 3081 machine when JIm( > 174.6. In this case, to prevent the overflows 
from occurring the anlytic calculation is bypassed when 

IZm(K,aK,a/2i)l > 150. (5.1) 

The numerical sample calculations are performed for values of K, , K2, a, and R 
which occur in the Sturmian treatment [S, 61 of 21.6 MeV deuterons scattering 
from a nickel target in the presence of Coulomb potentials. The values of K depend 
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on the value of L and R, the present choice corresponding to a value of L = 9 and 
R = 12 fm. This means that the turning point of the corresponding Bessel functions 
occurs at a value of r less than R, i.e., the recursion relation (2.3) can be solved in 
the upward direction as long as L stays below 9. However, to test the method, 
values of L as high as 20 are included in the calculation. The values of KR actually 
used are listed in Table II, and also, for comparison purposes, what would have 
been the values of KR for L = 0 and R = 12 fm. The values of the parameters a and 
R, and the various combinations which describe the numerical cases, are listed in 
Table III. 

The procedure used to determine the accuracy achieved in the calculation will be 
described in what follows. One set of values of G, denoted as G,, is obtained by 
solving the recursion relations downward in L, starting with two consecutive values 
where G is set to zero. The value of L for which G(L) and G(L + 1) are set to zero, 
which is denoted as L,, is chosen as large as possible so as to prevent under- and 
overflow errors. The result for L = 0 (G,(O)) is compared with the value GA(O) 
obtained by means of the continued fraction expression and the ratio GA(0)/GD(O) 
is printed out. The deviation from unity is listed in Table IV in the columns A-D in 
the row for L = 0. In all cases the agreement was good to seven significant figures or 
better. The values of G, for values of L larger than zero are renormalized by this 
ratio, so as to increase their accuracy, and are then compared with the other 
methods in Table IV. The analytic expression was also evaluated for values of L 
larger than zero. This involves carrying out the two sums in Eq. (4.14). The second 
of these sums, which extends to infinity, was truncated at a value of L denoted as 
L,. The result is indicated with the letter A, and the comparison of the number of 
significant figures for which agreement with other methods is obtained (regardless 
of the power of 10 by which the answer is multiplied) is listed in Table IV. The 
corresponding values of L, and L, are listed in Table V. 

i 

TABLE II 

Sturmian Values of K, R" 

L=O L=9 

Real Imaginary Real Imaginary 

1 3.1269 - 0.2066 13.4879 - 1.3634 
2 6.2480 -0.4314 16.5087 - 1.4543 
3 9.3491 -0.7043 19.7885 -0.9653 

13 39.2762 -0.4124 52.5570 - 0.2428 
24 73.8287 -0.1920 87.4540 -0.1411 

First zero 3.1416 13.9158 

“These values of K,R are obtained by matching the Sturmian-Bessel functions L(r), defined in 
Eq. (1.2), to the corresponding Coulomb functions at R = 12 fm and the angular momentum L of 0 or 9. 
The latter correspond to 21.6 MeV deuterons (lab energy) indicent on the nucleus of nickel. 
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TABLE III 

Parameters and Notation” 

Case K, R K,Rh Case 
R 

(fm) (f:, 

I 13 16 12 4 
2 13 52 ;: 6 4 
3 13 87 c 4 4 
4 52 87 
5 13 1 

KR Values 

Abbreviated 

KR Real 

Full 

Imaginary 

13 13.4879 - 1.3634 
16 16.5087 - I .4543 
52 52.5570 - 0.2428 
87 87.4540 -0.1411 

I 1.3953 0 

” For example, Case 4b means that the values of K, R; Kz R; R; u are 52.5570 - 0.24281; 
87.4540 -0.141 li; 6 fm, 4 fm. 

’ These are abbreviated values for K, R. The explicit values are given in the bottom half of the table. 

The recursion relation was also evaluated upwards in L, starting with L = - 1 
and L = 0. The recursion of the G’s upwards in L, Eq. (2.3), generates severe can- 
cellation erros when the value of G starts to decrease rapidly with L. This happens 
when the turning point of either j,(K, P) or j,(K,r) falls outside of the interval O-R, 
since then the value of j, rapidly decreases with L in that interval. (The turning 
point Ye is given approximately by Kr r z L.) Accodingly the upwards recursions 
relation, is stopped at an L, which is the largest integer less than either lK, RI or 

IKlRI. 
From the comparison of the agreement between the three methods, one can 

deduce which of them is the most accurate. For example, for Case la the methods A 
and D have approximately the same accuracy, which is larger than that for U; for 
Cases 1 b and c A and U are more accurate than D, and so forth. The value deemed 
most accurate from the type of comparison described above is then used for the 
accuracy test of Olver’s method, which is described in Table V. The method picked 
for the comparison is indicated by the letters A or D, and the results from Olver’s 
method are denoted by 0. The entries listed under the label L,,, are the values of 
L, and L, and for Olver’s case it is the value of LN. For methods A or D the value 
of the absolute error is estimated from the comparison of the G, and G, values at 
L = 0, and the error for O’s method is taken from Eq. (A8) in the Appendix. The 
values of G(L) obtained by the various methods are listed in Table V. The last 
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TABLE IV 

Accuracy for G(L)” 

lb lc 

0 > 10 1 
5 2 2 2 10 11 > 7 I 2 

10 > 12 12 10 10 14 7 I 2 
15 2 11 6 
20 13 7 3 

0 12 13 > 12 
5 11 13 > 10 

10 12 13 11 8 
15 12 13 3 4 
20 13 13 3 

“The entries in the table represent the number of significant digits for which relative agreement 
between any two of the three methods is obtained. For example, the two numbers 0.2467279( -4) and 
0.2467189(-4) are in agreement o the fourth signiticant tigure, i.e., 0.2467( -4), and the entry of 4 
would be placed into the table. The exponent of 10 is -4 in this example. The symbol 2 indicates that 
the agreement is better or equal to the 14 significant figures printed out. The entries for the lines L = 0 
indicate the agreement between the downward recursion relation and the error integral-continued frac- 
tion methods for L = 0. 

“The parameters for the cases are explained in Table III. The values of LMAX for the A and D 
calculations are listed in Table V. 

’ A, U, and D stand for the anlytic, upward recursion and downward recursion methods, respectively, 
as explained in the text. The columns A-D describe the accuracy of the agreement between the A and D 
methods, for example. 

figure printed is already supposed to be unreliable, according to the error estimates 
listed to the left. 

The main result which emerges from Table VI is that Olver’s error estimates are 
very reliable. This can be seen by noting that the last figure printed for each G, 
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TABLE V 

Values of LMAX for the Cases Listed in Table IV 

Case la lb lc 2a 2b 3a 3b 4a 4b 5a 5b 

LA 38 32 32 32 ~ 32 ~ ~ ~ 32 32 

L,, 62 62 64 64 62 60 60 106 104 50 50 

which should be unreliable according to Olver’s prescription, is indeed in dis- 
agreement with the more accurate results listed in the line above, while the second 
to last figure is in agreement with the more accurate results. Case 5a is also 
interesting. It shows that the absolute errors in the D-method for high L values are 
much smaller than what is expected from the comparison A-D at L = 0. The num- 
bers in parenthesis listed for Case Sa are the figures printed out by the computer 
which should no longer be reliable according to the estimate based on the A-D 
comparison at L=O. Yet, these figures are in agreement with the more accurate 0 
result. Thus, while in Olver’s method the absolute error, once introduced at L = L,, 
propagates virtually unchanged to all other L values, in the D-method the absolute 
error appears to increase as the recursion proceeds downward in L. 

The effect of cutting off the integral (2.1) at the upper limit R can be very 
pronounced. The absolute values of G and G are listed in Table VII in order to 
illustrate the magnitude of this effect. The difference between G and G can become 

TABLE VI 

Absolute Accuracy for G(L) 

Case Ic 
L=5 

L MAX0 Error Re G(5)’ Im G(5) 

A 32 O.l(-12)? 0.4576545059987 - 0.1184469683469 
0 39 0.80(-13) 0.4576545059986 -0.1184469683468 
0 31 0.25( - 10) 0.45765450598 - 0.11844696834 
0 26 0.20( -9) 0.4576545061 -0.1184469682 
0 21 O.lO( -6) 0.4576544 -0.1184468 
0 16 0.18( -2) 0.458 -0.117 

“L MAX is the value of L at which truncation to zero is started. 
“This is the absolute error, which for the first line is obtained from the comparison of the relative 

errors in Table IV, and if uncertain is followed by a questionmark. For Olver’s method the error is 
calculated from Eqs. (A.8). 

c The last significant digit printed is the first one which is deemed inaccurate according to the absolute 
error quoted in the preceding column. No rounding with the digits following it (but not printed) was 
performed. The number in parenthesis indicate the powers of ten by which the entries are to be mul- 
tiplied. The parenthesis in Case 5a are discussed in the text. 

Table continued 
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TABLE VI (continued) 

L=l5 

L MAX Error Re G(15) Im G(15) 

A 32 O.l(-12)? 0.24728844216( -2) -0.459918093136( - 1) 
0 39 0.12( - 12) 0.24728844215( - 2) -0.459918093135( - 1) 
0 31 0.40( - 10) 0.247288440( -2) -0.4599180931( - 1) 
0 26 0.31(-9) 0.24728846( - 2) -0.459918091( - 1) 
0 21 0.18( -6) 0.24727( - 2) -0.459917( - 1) 

Case 2b 
L=5 

LMAX Error Re G(5) Im G(5) 

D 62 0.2(-15) 
0 39 0.20( - 18) 
0 31 O.lO(-11) 
0 26 0.20( - 4) 
0 21 0.14( -5) 
0 16 0.57( - 3) 

L = 20 

L MAX 

D 62 
0 39 
0 31 
0 26 

Case 5a 
L=5 

L MAX 

Error 

0.2( - 15) 
0.35( - 18) 
0.19(-11) 
0.34( - 8) 

Error 

-0.62891245695030( -2) 0.10258436414620( - 1) 
-0.62891245695030( -2) 0.10258436414620( - 1) 
-0.6289124568( -2) 0.10258436414( - 1) 
-0.6289126(-2) 0.10258436( - 1) 
-0.6289( -2) 0.10256( - 1) 
-0.65( -2) 0.107(-l) 

Re G(20) 

0.5245699829 ( - 6) 
0.5245699829777( - 6) 
0.524568( - 6) 
0.527( - 6) 

Im G(20) 

0.660553706739 ( - 4) 
0.66055370673986( -4) 
0.66055370( - 4) 
0.66056( -4) 

Re G(5) Im G(5) 

D 50 O.l(-15) 0.26908495487(764)( -5) 0.12434504051(292)( -5) 
A 32 O.l( - 15)? 0.26908495487(764)( -5) 0.12434504051(292)(-5) 
0 24 0.57( -67) 0.26908495487764( - 5) 0.12434504051292 (-5) 
0 9 0.50(-17) 0.2690849548787( - 5) 0.1243450405125( -5) 

L= 10 

LMAX Error Re G( 10) Im G( 10) 

D 50 O.l(-15) 0.27120(967265472)( - 11) -0.721(49374378477)( - 12) 
A 32 O.l(-15)? 0.27120(965265490)( - 11) -0.721(49374378878)( - 12) 
0 19 0.90( -43) 0.27120967265472( - 11) -0.72149374378477( - 12) 
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TABLE VII 

Order of Magnitude of G and G (in fm) 

la lb Ic 

G G G G G G 

0 0.2(l) 0.2(l) 0.6(O) 0.8(O) 0.2(O) OS(O) 
5 0.4(O) 0.4(O) 0.5(O) 0.6(O) 0.2(O) 0.5(O) 

10 0.2( - 1) 0.2( - 1) 0.2(O) 0.3(O) 0.1(O) 0.4(O) 
15 0.2( - 3) 0.2( -3) 0.6( ~ 1) 0.2( ~ 1) 0.6( ~ 1) 0.5( ~ 1 ) 
20 0.5( -6) 0.5( -7) 0.1(-l) O.l(--4) 0.3(-l) 0.3( -4) 

2a 2b 3a 3b 

G G G G G 

0 0.7( - 18) 0.2( -4) 0.2( - 1) 0.3( -4) 0.1(-l) 
5 0.5(-18) 0.4( -4) 0.1(-l) O.l( -4) 0.4( - 2) 

10 0.2(-18) 0.5( -4) 0.2( - 1) 0.3( -4) 0.1(-l) 
15 0.3( - 19) O.l(-4) 0.5( -2) 0.4( - 5) 0.2( -2) 
20 0.4( - 20) 0.2( -6) 0.7( -4) 0.3( -7) 0.2( -4) 

4a 4b 5a 5b 

G G G G G G 

0 0.4( -5) 0.4( - 2) 0.3( ~ 1) 0.3( - 1 ) 0.2( -6) 0.1(O) 
5 O.l( -4) O.l(-2) 0.3( -5) 0.3( -5) 0.6( - 8) 0.7( -4) 

10 O.l( -4) 0.3( -2) 0.3( ~ 11) 0.3( - I I ) 0.4( - 1 1) 0.3( -9) 
15 O.l(-4) 0.4( -2) 0.3(-18) 0.5( - 19) 0.4(-15) O.l(-16) 
20 O.l( -4) 0.7( - 2) 0.5( ~ 26) 0.3( -28) 0.7( -20) 0.7( - 26) 

particularly pronounced when the integrand is very oscillatory, as is the case when 
the wave numbers K are large compared to a- ‘. In this case the negative parts of 
the integrand nearly cancel the positive parts, but the cancellation is interrupted at 
the upper limit of integration R for the last oscillation lobe. Depending on where 
this lobe occurs, G can thus be substantially larger than G, as can be seen for 
Case 2a. Under these conditions G will also vary nonmonotonically for successive 
values of L, depending on how the last noncancelled lobe is placed relative to R. 
This effect will not be large if R is substantially larger than a, since then the factor 
exp( -r’/a’) will be quite small at the upper limit of the integral, and G will be very 
close to G, as is true, for example, for Case la. 

6. SUMMARY AND CONCLUSIONS 

The integral G(L) of the product of two spherical Bessel functions j,(K,r) and 
j,( K, r) times r* exp( - r’/a’) over a finite radial range from 0 to R can be evaluated 
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by using a simple recursion relation, Eq. (2.3), between G(L), G(L + 1 ), and 
G(L + 2). The inhomogeneous terms X(L) of this recursion relation arise from the 
upper limit of integration R. 

A second ingredient needed for the calculation of G(L) is the evaluation of an 
error function of complex argument in terms of which G(0) and G( - 1) can be 
expressed. A continued fraction expression exists in the literature for the latter, 
which converges better the more oscillatory is the integrand in G(L), i.e., the more 
difficult it would be to evaluate G(L) by a radial mesh summation technique. The 
recursion relation is solved both analytically and numerically by means of various 
algorithms. The comparison of the numerical results (Tables IV and V) allows one 
to establish the accuracy of the methods, relative accuracies of one part in 10’ being 
easily achieved. The recursion algorithm of Olver [ 171 was found to be particularly 
stable and to give rise to reliable absolute error estimates (Table V). 

The analytical solution is obtained by treating the recurrence relation as a 
finite difference equation [22]. The homogeneous part of the equation gives rise 
to two independent solutions, fL(z3) and qL(zj) where z3 = K,aK,a/2i. The 
inhomogeneous recurrence relation is then solved in terms of sums over I from 0 to 
L and from L + 1 to co, a technique which is reminiscent of the use of Green’s 
functions for the solution of inhomogeneous differential equations. In this process 
an identity emerges (Eq. (4.13)) between one of the sums from 1 to cc and a cer- 
tain combination between G(0) and G( - 1). This identity has been verified to hold 
numerically to a large degree of accuracy. 

If the values of K, R and K,R and K,R are both less than L,, then the values of 
G(L) for L = 0, 1, 2 ,..., L, are all of the same order of magnitude and can be 
calculated directly from the upward recurrence relation starting from the values 
G( - 1) and G(0) without loss of accuracy. The latter are calculated reliably from 
the continued fraction representation of the error functions. This method is found 
to be the fastest, and generally the most accurate, of the various methods examined. 
The case of the Sturmian Bessel functions [S] is particularly G used in the numerical examples 

given, is approximately 0.03 to 0.04 set for the analytical method, 0.01 to 0.02 set 
for the down recursion, and less than 0.01 set for the up-recursion, on the IBM 
3081 computer, used in double precision. Olver’s method is comparable in com- 
plexity to the down recursion method, and hence should require comparable 
execution times. 

In summary, the indefinite integral (2.1) of the product of two Bessel functions 
and a gaussian has been found to obey a simple inhomogeneous three point recur- 
sion relation. An analytical solution for this finite difference equation has been 
given, and several numerical methods for evaluating the recursion have been 
examined. The method of Olver was found to give very reliable absolute error 
estimates, and hence the accuracy of the result is determined by the accuracy with 
which the required input Bessel functions can be obtained. 
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The existence of a method to evaluate such integrals now opens up the possibility 
of solving a set of coupled channel equations to high accuracy, by the use of a Stur- 
mian expansion technique [S, 63, provided that the coupling potentials can be 
expressed in terms of a few Gaussians. 

Recursion relations for potentials for the form r" exp( -b/r) have been obtained 
[15], and hence a generalization of the present numerical method to this case is 
feasible. However, these recursion relations are more involved than the one for the 
Gaussian potential, and a numerical accuracy analysis has as yet not been carried 
out. 

APPENDIX Al: CALCULATION OF A CONTINUED FRACTION 

The method employed here is the one developed by Steed [23], at the University 
of Manchester in 1967. This method employs a recursion technique involving 
powers of (l/~)~, with a number of terms N chosen such that when the difference 
between the Nth and (N- 1)th approximants to the continued fraction, together 
with that of the (N- 2)th and (N - l)th approximants becomes less than the 
imposed accuracy parameter E, , then the recursion is terminated. The error in the 
continued fraction then becomes less than E,. This has been verified during an 
application [25] of Steeds algorithm to the evaluation of the exponential integral 
by means of the continued fraction given by Eq. (5.1.22) in [20]. Comparison of 

TABLE IA 

Number of Terms N in the Evaluation of erf(z)U 
so as to Achieve Accuracy E, 

0.05 3 5 
0.2 5 7 
0.5 7 10 
1.4 14 19 
1.5 31 68 
2.0 20 42 
3.0 12 24 
4.0 10 17 

3.0+ 3.Oi 10 19 
5.0 8 14 

’ When Iii* < 2 the power series of Eq. (3.5) is 
used. For [z(*> 2 the Steed method for 
evaluating the continued fraction in Eq. (3.6) is 
used, as is described in the text. 



EVALUATION OF A BESSEL INTEGRAL 123 

the answer with numerical results given in [20 J for the sine and cosine integrals, 
where they are listed to 10 places, shows that the error parameter E,. is reliable, i.e., 
the error in the continued fraction is somewhat less than the value of E,.. A com- 
parison with the value of the erf(z) for complex z, given in Table 7.9 of [20), 
showed perfect agreement to all the six figures listed. The function C(z) defined in 
Eq. (3.9), is calculated by the continued fraction method described above when 
/zq > 2. 

When 1.z 2 > 2 the continued fraction is expressed in terms of the error function 
according to Eq. (3.8), and the latter is evaluated by the power series, Eq. (3.5). The 
sum is stopped when the nth term is Eq. (3.5) becomes less than E,.. The number of 
terms N, needed in either the power series or in the recursion relations of the con- 
tinued fraction, so as to get various accuracies E,. are listed in Table IA. All 
calculations are carried out in double precision on a IBM 3081 computer. 

APPENDIX A2: OLVER'S METHOD FOR SOLVING 
AN INHOMOGENEOUS FINITE DIFFERENCE EQUATION 

The formulae used for Olver’s method [17] will be briefly described in what 
follows. 

The functions y, to be calculated for L = 0, 1, 2,..., P with a given accuracy obey 
the inhomogeneous recursion relations 

a,y,~,-b,y,+c,y,+,=d,, (AlI 

where in the present application 

aL= 1; CL= -1, 

b, = (4L + 2)/(k,k,a2), 

d, = X, exp( - R2/a2). 

(42) 

According to the accuracy desired for the function y,, y,,. ., yp, a maximum value 
of L is chosen (denoted as N) and the N - 1 equations (Al ) for L = 1,2,..., N - 1 
are solved for yi”‘), $‘),..., yIy”l, under the assumption that y, = e, is known and 
yp’ = 0. 

For this purpose one needs the quantities pL for L = 0, 1, 2,..., L,,, which satisfy 
the homogeneous recursion relation 

aLpL-l-bLpL+cLpL+~=O (A3) 

and which are such that 

PO=& p, = 1. (A4) 
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The p’s are linear combinations of two independent solutions of Eq. (A3), which for 
our present application is 

PL = GOfL -foqL). (A51 

The p’s are calculated either from Eq. (A5), with the q’s and f’s obtained indepen- 
dently in terms of spherical Bessel functions of argument zlr or by upward recur- 
sion of Eq. (A3), using for starting values (A4). The first method is more accurate, 
but the second method is much preferable since it does not require knowledge of 
the f’s. Both methods were used in the present application. 

Next the quantities eL are needed for L = 0, l,..., L,,,. They obey the recursion 
relation 

eL = (aLeL- 1 - dLpL)lcL, 

L = 1, 2 )...) L,,,, 

with 
e. = W 1, 

assumed as known. For our case the recursion relation is 

e, = -eL ~, + XL pL exp( - R2/a2). 

To evaluate the truncation error y,=O, the sums E, are calculated 

(A7) 

For numerical applications the upper limit of the sum is truncated at the value 
L MAX which is chosen as described in Appendix A3. The truncation error of the 
functions y is then given by [17, Eq. (5.01)], 

yi”’ - yi”’ = pLEN t.48) 

and the functions y”” are evaluated by backward recursion of the equation 

dN) = (eL + pL YINj!, )lPL + l, 

L=N- 1, N-2,..., 1 

with y$“) = 0. 

APPENDIX A3: EVALUATION OF THE BESSEL FUNCTIONS 

(A9) 

As is indicated in Section 5, two methods for calculating j,(z) are employed 
according to how large z is compared to L. If ]zI * > (L - 6)L Eq. (10.1.10) of [20] 
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is used. In this case the turning point occurs for values of the argument of j, less 
than z, and the expression of j, in terms of polynomials in (l/z) times exp( f iz) will 
not lead to loss of accuracy due to cancellations. The condition jzl* > (L - 6)L is 
imposed somewhat arbitrarily. If it is not satisfied, then the Bessel functions are 
evaluated by a downward recursion starting a L,,, and LMAX + 1. At these values 
of L the Bessel function are evaluated by the analytic series expansion in powers of 
(tz’), Eq. (10.1.2) of [20], and the series is stopped either when the square of the 
last term in the series is less than lOPi or when the number of terms exceeds 25. 
Should neither of these two conditions be fulfilled, then the initial values of the 
Bessel functions at LMAX are inaccurate. The downward recursion is nevertheless 
carried out, and the accuracy of the resulting Bessel functions is investigated for the 
L’s at which the functions are actually used. The accuracy test used is the one given 
by W. Kahan, as described on p. 52 of a 1967 paper by Gautschi [ 183. In the 
present application sufficiently good accuracies for the Bessel functions have been 
achieved for those values of L for which they are needed. 

The value of LMAX is chosen as follows. If 14~1’ is less than 160, LMAx is set equal 
to Ifzl’ or to L whichever is larger and the power series expansion converges well 
after 25 terms. Otherwise, LMAx is set equal to 2 Iz/ and the power series will have 
an error remaining. The normalization factor of thepower series, which should have 
the value zL/(2L+ l)!!, is instead set equal to exp( -70) for LMAx, and 
z x {exp( -70)}/(2L + 3) for L,,, + 1. This is dictated by the requirement that the 
product of two Bessel functions, which occurs in the calculation of X,, will not 
underflow for large values of L. The recursion relation is then started from 
L MAX + 1 downward through all L’s to L = 0. The required normalization of the 
Bessel functions at all L values is subsequently determined by comparison of j,(z) 
thus obtained with sin(z)/z, calculated separately, and the normalization factor is 
stored for a final renormalization of all the quantities which are needed in the 
calculations of the recurrence relation. 
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